"Thermal" Decoupling and Apparent Rapid Intramolecular Exchange in (Ph₃P)₂CuBH₄: ¹H Nuclear Magnetic Resonance Study

By MICHAEL GRACE, HERBERT BEALL,* and C. HACKETT BUSHWELLER

(Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609)

Summary The sharpening of the ¹H n.m.r. spectrum of the BH₄ hydrogens of (Ph₃P)₂CuBH₄ into a singlet resonance at low temperature indicates efficient quadrupole induced ¹⁰B and ¹¹B spin relaxation ("thermal" decoupling) and apparent rapid intramolecular exchange on the ¹H n.m.r. time scale at -110° .

AVAILABLE n.m.r. spectra ("B and "H) of various metal derivatives of BH4- in solution indicate equivalent borohydride hydrogens although these hydrogens are nonequivalent in the pertinent crystal structures. This behaviour suggests a rapid intramolecular exchange process on the n.m.r. time scale.

In order to determine the nature of this apparently rapid rate process, we investigated the temperature dependence of the ¹H n.m.r. spectrum (60MHz) of (Ph₃P)₂CuBH₄ (I)¹ in 50% CDCl₃-50% CH₂Cl₂ (v/v) as solvent. Examination of the ¹H n.m.r. spectrum of the BH₄ hydrogens of (I) at 25° reveals an extremely broad, almost indetectable resonance indicating extensive ¹⁰B and ¹¹B coupling to hydrogen (Figure). Upon lowering the temperature, the spectrum sharpens significantly (Figure) giving a singlet of Lorentzian line shape at -106° . Crystallization occurred at -115° . The sharpening of the BH₄ proton resonance at low temperatures indicates effective quadrupole induced ¹⁰B and ⁿB spin relaxation ("thermal" decoupling). The singlet resonance for the BH, hydrogens at -106° suggests a rapid intramolecular exchange process or equivalence of all hydrogens in a static form of (I). Investigations at lower temperature may shed some light on this problem.

FIGURE. The temperature dependence of the ¹H n.m.r. (60MHz) due to the BH₄ hydrogens of (I).

Indeed, "thermal" decoupling appears to be general for many boron-hydrogen neutral compounds and anions, giving much simplified spectra at lower temperatures.² In the case of $(Ph_3P)_2CuB_3H_8$, both the effects of thermal decoupling (at -20°) and an intramolecular exchange process (at -80°) are evident in the ¹H n.m.r. spectrum.²

C.H.B. thanks the Research Corporation and H.B. the donors of The Petroleum Research Fund, administered by the American Chemical Society, for financial support.

(Received, April 13th, 1970; Com. 516.)

¹S. J. Lippard and K. M. Melmed, *J. Amer. Chem. Soc.*, 1967, 89, 3929. ²H. Beall, C. H. Bushweller, W. J. Dewkett, and M. Grace, *J. Amer. Chem. Soc.*, in the press.